If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2-14v-36=0
a = 2; b = -14; c = -36;
Δ = b2-4ac
Δ = -142-4·2·(-36)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-22}{2*2}=\frac{-8}{4} =-2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+22}{2*2}=\frac{36}{4} =9 $
| 5x+2x/2=360 | | 109+10x=39 | | 6x+2=3x+26= | | 3x+-6=13 | | 5x-6=x+10= | | 94-5x=74 | | 10+0x=10 | | 3z^2+26z-9= | | 4x+(15+3x)+(25+x)=88–4x | | 1x+60=63 | | 53+3x=80 | | 2(3x+9)=15x–45 | | 75-6x=21 | | 180-x=2x+51 | | ?x7=35 | | 6x^2+17+7= | | 108-4x=88 | | 20x–18=(3x+4)·5+2 | | 8=r−–4 | | 87+8x=31 | | 15x=6x+54= | | 67-3x=46 | | 71+2x=51 | | Y=0.4^2+1.2x+4 | | 122+8x=66 | | 0.5(2+4x)=7(x-1)-2 | | 7b-5=3b-4 | | -3x-5=2(4+5x) | | 5(x+9)–4=12–(x+1) | | (2/x-3)-(1/4x-12)=(2/x-5) | | 4(2–x)=x-27 | | z+15=4/9 |